# Rogue River Fuels Hazard Reduction Project

Grants Pass Field Office

Silviculture Options

Welcome

# Rogue River Fuels Hazard Reduction Project

Galice Community Open House February 18<sup>th</sup> 2003

### Silviculture Goals

- By combining Silviculture and Fuels Treatments
  - Reduce fire hazard and risk.
  - Create a sustainable mosaic of vegetation and fuel types.
  - Protect property.
  - Safeguard the Outstanding Remarkable Values (ORV)
    - Natural Scenic Qualities / Fisheries/ Recreation

# Current Vegetation Communities

- Five distinct vegetation communities
  - Mixed Evergreen
  - Oak Woodlands
  - Riparian
  - Serpentine
  - Rock Outcroppings/Cliffs

### Plant Series Within The Corridor



### Mixed Evergreen

#### Plant Associations

- Downstream of Roberston Bridge
- Douglas-fir/canyon live oak-poison oak.
- Douglas-fir/black oak-poison oak
- Douglas-fir/tanoak/canyon live oak
- Tanoak/Douglas-fir/canyon live oak
- Upstream of Robertson Bridge
- Douglas-fir/shrub (manazanita,buckbrush)
- Douglas-fir/ponderosa pine-poison oak



### Mixed Evergreen

#### Plant Associations

- Downstream of Roberston Bridge
- Douglas-fir/canyon live oak-poison oak
- Douglas-fir/black oak-poison oak
- Douglas-fir/tanoak/canyon live oak
- Tanoak/Douglas-fir/canyon live oak
- Upstream of Robertson Bridge
- Douglas-fir/shrub (manazanita,buckbrush)
- Douglas-fir/ponderosa pine-poison oak



### Mixed Evergreen

#### Plant Associations

- Downstream of Roberston Bridge
- Douglas-fir/canyon live oak-poison oak
- Douglas-fir/black oak-poison oak
- Douglas-fir/tanoak/canyon live oak
- Tanoak/Douglas-fir/canyon live oak
- Upstream of Robertson Bridge
- Douglas-fir/shrub (manzanita, buckbrush)
- Douglas-fir/ponderosa pine-poison oak



### Oak Woodlands

- Transition zones between woodlands and forest
- Characterized by open canopy and grasses
- White Oak/Douglas-firpoison oak
- On wetter sites
- High tree species diversity
- White Oak/hedgehog dogtail
- On drier sites
- Only white oak is in the overstory



### Riparian/Hardwoods

- Mixture of native riparian forest, small wetlands, and highly disturbed areas, i.e. old agricultural fields.
- Willows adjacent to the water.
- Large cottonwoods and Oregon Ash dominate the flood plain.
- Alders and bigleaf maple are higher up on the banks
- Large pine and oak occur on the larger flood plains of the river.
- Disturbed areas invaded by blackberry, scotch broom, tansy...
- Drainages entering the Rogue are dominated by Native Riparian Vegetation
- Douglas-fir/bigleaf maple/Oregon Ash



- As a result of fire exclusion, vegetation density has reached levels that are not sustainable over time.
- Low tree and plant vigor.
- Increased levels of insect and disease activity.
- Increased conifer and oak mortality.



- As a result of fire exclusion, vegetation density has reached levels that are not sustainable over time.
- Low tree and plant vigor.
- Increased levels of insect and disease activity.
- Increased conifer and oak mortality.



- As a result of fire exclusion, vegetation density has reached levels that are not sustainable over time.
- Natural species composition is changing.
- Fuel complex is becoming more flammable and increasingly hazardous.



- As a result of fire exclusion, vegetation density has reached levels that are not sustainable over time.
- Natural species composition is changing.
- Fuel complex is becoming more flammable and increasingly hazardous.



- As a result of fire exclusion, vegetation density has reached levels that are not sustainable over time.
- Natural species composition is changing.
- Fuel complex is becoming more flammable and increasingly hazardous.



- As a result of fire exclusion, vegetation density has reached levels that are not sustainable over time.
- Natural species composition is changing.
- Fuel complex is becoming more flammable and increasingly hazardous.
- Fuel condition classes II & III have the potential for large and severe wildfires.



- As a result of fire exclusion, vegetation density has reached levels that are not sustainable over time.
- Natural species composition is changing.
- Fuel complex is becoming more flammable and increasingly hazardous.
- With understory thinning, light removals to manage density and fuel treatments wildfire severity is decreased.



# Silviculture & Fuels Options

Potential Sideboards



- VRM 1 Sensitive
  - Seen Area
  - Unseen Area
- Minimize overstory disturbance
- Use existing contract methods



### Silviculture & Fuels Options

Potential Sideboards



- Maintain plant series
   within its natural direction
   of succession.
- Minimize the cost of treatments and how often they are done.
- Develop specific px treatments dependent upon neighborhood level plans.



# Silviculture Bare Bones Px by Vegetation Communities

- DF/Tanoak & Tanoak/DF
  - Understory Thinning
    - Variable crown thinning by species preference.
    - Spacing increased in unseen VRM
  - Fuels Reduction
    - Lop and scatter
    - Prescribed Underburn



# Silviculture Bare Bones Px by Vegetation Communities

### Mixed Evergreen

- DF and Pine
  - Understory Thinning
    - Spacing dependent on type of tree present
    - Spacing and diameter increased in unseen VRM
    - Release large Pine & DF
  - Fuels Reduction
    - Handpile & Burn



Before Understory Thinning

# Silviculture Bare Bones Px by Vegetation Communities

- DF and Pine
  - Understory Thinning
    - Spacing dependent on type of tree present
    - Spacing and diameter increased in unseen VRM
    - Release large Pine & DF
  - Fuels Reduction
    - Handpile & Burn



After Understory Thinning

# Silviculture Bare Bones Px by Vegetation Communities

- DF and Pine
  - Understory Thinning
    - Spacing dependent on type of tree present
    - Spacing and diameter increased in unseen VRM
    - Release large Pine & DF
  - Fuels Reduction
    - Handpile & Burn



Before Understory Thinning

# Silviculture Bare Bones Px by Vegetation Communities

- DF and Pine
  - Understory Thinning
    - Spacing dependent on type of tree present
    - Spacing and diameter increased in unseen VRM
    - Release large Pine & DF
  - Fuels Reduction
    - Handpile & Burn



After Understory Thinning

# Silviculture Bare Bones Px by Vegetation Communities

- White Oak
  - Understory Thinning
    - DF & shrubs reduced
    - Leave old remnant DF
    - Leave 16 to 35 trees/acre
    - Retain all oaks >6" DBH
  - Fuels Reduction
    - Mechanical
    - Hand pile & Burn
    - Prescribed Underburn



Thinned/Brushed/HP & Burned Chipped

# Silviculture Bare Bones Px by Vegetation Communities

- Riparian/Hardwood
  - Understory Thinning
    - Remove vegetation from leave trees for a radius of 15-40 ft.
    - Blackberrys ??
  - Fuels Reduction
    - Mechanical
    - Prescribed Underburn
    - Hand pile & burn



- How can I be involved?
- Why now?
- Neighborhood plan?
- Forest Product Removal?
- Specific Px?



- How can I be involved?
- Why now?
- Neighborhood plan?
- Forest Product Removal?
- Specific Px?



- How can I be involved?
- Why now?
- Neighborhood plan?
- Forest Product Removal?
- Specific Px?



- How can I be involved?
- Why now?
- Neighborhood plan?
- Forest Product Removal?
- Specific Px?



- How can I be involved?
- Why now?
- Neighborhood plan?
- Forest Product Removal?
  - Potential Methods
- Specific Px?



ATV

Small Diameter Material

- How can I be involved?
- Why now?
- Neighborhood plan?
- Forest Product Removal?
  - Potential Methods
- Specific Px?



Chipper
Small Diameter Material

- How can I be involved?
- Why now?
- Neighborhood plan?
- Forest Product Removal?
  - Potential Methods
- Specific Px?



Cut To Length

Small Diameter Material

- How can I be involved?
- Why now?
- Neighborhood plan?
- Forest Product Removal?
  - Potential Methods
- Specific Px?



Zig Zag Yarder

Small Diameter Material

- How can I be involved?
- Why now?
- Neighborhood plan?
- Forest Product Removal?
  - Potential Methods
  - Do you have a preferred method to remove biomass?
- Specific Px?



- How can I be involved?
- Why now?
- Neighborhood plan?
- Forest Product Removal?
- Specific Px?



### If you ask a Forester

- Fire is an important shaper of our Forests.
- Fire is a tool with risks.
- Reintroduce cool underburning and low intensity management so structural and composition diversity remain on the site.
- Take your cues from functional ecosystems.
- Reinstate disturbance cycles as nature intended.

### If you ask a Forester

- Fire is an important shaper of our Forests.
- Fire is a tool with risks.
- Reintroduce cool underburning and low intensity management so structural and composition diversity remain on the site.
- Take your cues from functional ecosystems.
- Reinstate disturbance cycles as nature intended.

### Questions For You!

- Do you have a preferred method to remove biomass?
- Should fuel hazard reduction be conducted in Riparian Areas?
- What treatment methods might best balance VRM-Fuels-Forest Health in your neighborhood?
- As we accomplish fuel reduction what do we need to be concerned about?

### Questions For You!

- Do you have a preferred method to remove biomass?
- Should fuel hazard reduction be conducted in Riparian Areas?
- What treatment methods might best balance VRM-Fuels-Forest Health in your neighborhood?
- As we accomplish fuel reduction what do we need to be concerned about?

# Rogue River Fuels Hazard Reduction Project

Grants Pass Field Office

Silviculture Options

Thank You



